» נושאי לימוד
» נושאי לימוד
יום שלישי 25 ביוני 2019
שקילות שורה ופעולות שורה יסודיות
דף ראשי   מטריצות  מטריצות  שקילות שורה ופעולות שורה יסודיות גרסה להדפסה

שקילות שורה ופעולות שורה יסודיות

 

 

על מטריצה A נאמר שהיא שקולת שורות למטריצה B , אם ניתן לקבל את B מ- A ע"י סדרה סופית של הפעולות הבאות הנקראות  פעולות שורה אלמנטריות(יסודיות):

 

 

 E1 : החלפת השורה ה- i  והשורה ה - j    -   
 E2:   הכפלת השורה ה- i בסקלר שונה מאפס  - 

  E3 : החלפת השורה ה-  i ב- k פעמים השורה ה- j   ועוד השורה ה- i  -

                                          

 

 

 

יש דמיון בין פעולות אלו לאלו המשמשות בפתרון מערכות של משוואות  לינאריות. 

 

מסובך? אל דאגה! ניישם פעולות אלו ע"י הפיכת מטריצה לצורה מדורגת או צורה קנונית.

 

דוגמאות

 

א)  נביא את המטריצה     לצורה מדורגת:

 

   a11 = 1 השתמש ב- 

 כציר כדי לאפס את כל האיברים מתחת לאיבר זה, כלומר יישם את פעולות השורה:

 

      וקבל את המטריצה:

 

 

 a23 = 4כעת השתמש ב

כציר כדי לאפס את האיבר שמתחת לאיבר זה, כלומר יש ליישם את פעולת השורה:

 

    וקבל את המטריצה:

 

כעת המטריצה מדורגת.

 

 

ב)  נביא את המטריצה  המדורגת    לצורה קנונית:

 

נכפיל את R3  ב- ¼  כך שהאיבר המוביל השונה מאפס יהיה שווה ל-1, ואז נשתמש

ב- a35 = 1  כציר כדי לאפס את האיברים שמעליו ע"י הפעולות:

 

ונקבל:

 

 

נכפיל כעת את R2  ב- 1/3   כך שהאיבר המוביל השונה מאפס שווה ל-1, ואז נשתמש

ב- a23 = 1  כציר כדי לאפס את האיבר שמעליו ע"י הפעולה:

 

 

 ונקבל:

 

 

לבסוף, נכפיל את R1  ב- ½  ונקבל:

 

וזו המטריצה הקנונית של A.

 

 

כל מטריצה שקולת שורות למטריצה קנונית אחת ויחידה שנקראת הצורה הקנונית של A

 

 

 

 

 

 31-01-04 / 18:50  עודכן ,  21-12-03 / 18:37  נוצר ע"י חגית כנפי  בתאריך 
 מטריצות מדורגות - הקודםהבא - איך פותרים מערכת של משוואות לינאריות בעזרת מטריצה? 
תגובות הקוראים    תגובות  -  0
דרכונט
מהי מערכת הדרכונט?
אינך מחובר, להתחברות:
דוא"ל
ססמא
נושאי לימוד
חיפוש  |  לא פועל
משלנו  |  לא פועל
גולשים מקוונים: 5